Wormholes and black hole microstates in AdS/CFT

Author:

Cotler Jordan,Jensen Kristan

Abstract

Abstract It has long been known that the coarse-grained approximation to the black hole density of states can be computed using classical Euclidean gravity. In this work we argue for another entry in the dictionary between Euclidean gravity and black hole physics, namely that Euclidean wormholes describe a coarse-grained approximation to the energy level statistics of black hole microstates. To do so we use the method of constrained instantons to obtain an integral representation of wormhole amplitudes in Einstein gravity and in full-fledged AdS/CFT. These amplitudes are non-perturbative corrections to the two-boundary problem in AdS quantum gravity. The full amplitude is likely UV sensitive, dominated by small wormholes, but we show it admits an integral transformation with a macroscopic, weakly curved saddle-point approximation. The saddle is the “double cone” geometry of Saad, Shenker, and Stanford, with fixed moduli. In the boundary description this saddle appears to dominate a smeared version of the connected two-point function of the black hole density of states, and suggests level repulsion in the microstate spectrum. Using these methods we further study Euclidean wormholes in pure Einstein gravity and in IIB supergravity on Euclidean AdS5× S5. We address the perturbative stability of these backgrounds and study brane nucleation instabilities in 10d supergravity. In particular, brane nucleation instabilities of the Euclidean wormholes are lifted by the analytic continuation required to obtain the Lorentzian spectral form factor from gravity. Our results indicate a factorization paradox in AdS/CFT.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3