The timbre of Hawking gravitons: an effective description of energy transport from holography

Author:

He Temple,Loganayagam R.,Rangamani Mukund,Sivakumar Akhil,Virrueta Julio

Abstract

Abstract Planar black holes in AdS, which are holographically dual to compressible relativistic fluids, have a long-lived phonon mode that captures the physics of attenuated sound propagation and transports energy in the plasma. We describe the open effective field theory of this fluctuating phonon degree of freedom. The dynamics of the phonon is encoded in a single scalar field whose gravitational coupling has non-trivial spatial momentum dependence. This description fits neatly into the paradigm of classifying gravitational modes by their Markovianity index, depending on whether they are long-lived. The sound scalar is a non-Markovian field with index 3 − d for a d-dimensional fluid. We reproduce (and extend) the dispersion relation of the holographic sound mode to quartic order in derivatives, constructing in the process the effective field theory governing its attenuated dynamics and associated stochastic fluctuations. We also remark on the presence of additional spatially homogeneous zero modes in the gravitational problem, which remain disconnected from the phonon Goldstone mode.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence phase of a dS observer. Part I. Scalar exchange;Journal of High Energy Physics;2024-01-24

2. Boundary correlators and the Schwarzian mode;Journal of High Energy Physics;2024-01-23

3. Correlation functions of the Bjorken flow in the holographic Schwinger-Keldysh approach;Physical Review Research;2023-12-11

4. Anomalous hydrodynamics effective actions from holography;Journal of High Energy Physics;2023-11-08

5. U(1) quasi-hydrodynamics: Schwinger-Keldysh effective field theory and holography;Journal of High Energy Physics;2023-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3