Author:
Herrero-Valea Mario,Santos-Garcia Raquel
Abstract
Abstract
Unimodular Gravity is normally assumed to be equivalent to General Relativity for all matters but the character of the Cosmological Constant. Here we discuss this equivalence in the presence of a non-minimally coupled scalar field. We show that when we consider gravitation to be dynamical in a QFT sense, quantum corrections can distinguish both theories if the non-minimal coupling is non-vanishing. In order to show this, we construct a path integral formulation of Unimodular Gravity, fixing the complicated gauge invariance of the theory and computing all one-loop divergences. We find a combination of the couplings in the Lagrangian to which we can assign a physical meaning. It tells whether quantum gravitational phenomena can be ignored or not at a given energy scale. Its renormalization group flow differs depending on if it is computed in General Relativity or Unimodular Gravity.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献