New physics explanations of aμ in light of the FNAL muon g − 2 measurement

Author:

Athron PeterORCID,Balázs Csaba,Jacob Douglas H. J.ORCID,Kotlarski WojciechORCID,Stöckinger Dominik,Stöckinger-Kim HyejungORCID

Abstract

Abstract The Fermilab Muon g −2 experiment recently reported its first measurement of the anomalous magnetic moment $$ {a}_{\mu}^{\mathrm{FNAL}} $$ a μ FNAL , which is in full agreement with the previous BNL measurement and pushes the world average deviation $$ \Delta {a}_{\mu}^{2021} $$ a μ 2021 from the Standard Model to a significance of 4.2σ. Here we provide an extensive survey of its impact on beyond the Standard Model physics. We use state-of-the-art calculations and a sophisticated set of tools to make predictions for aμ, dark matter and LHC searches in a wide range of simple models with up to three new fields, that represent some of the few ways that large ∆aμ can be explained. In addition for the particularly well motivated Minimal Supersymmetric Standard Model, we exhaustively cover the scenarios where large ∆aμ can be explained while simultaneously satisfying all relevant data from other experiments. Generally, the aμ result can only be explained by rather small masses and/or large couplings and enhanced chirality flips, which can lead to conflicts with limits from LHC and dark matter experiments. Our results show that the new measurement excludes a large number of models and provides crucial constraints on others. Two-Higgs doublet and leptoquark models provide viable explanations of aμ only in specific versions and in specific parameter ranges. Among all models with up to three fields, only models with chirality enhancements can accommodate aμ and dark matter simultaneously. The MSSM can simultaneously explain aμ and dark matter for Bino-like LSP in several coannihilation regions. Allowing under abundance of the dark matter relic density, the Higgsino- and particularly Wino-like LSP scenarios become promising explanations of the aμ result.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference573 articles.

1. Muon g-2 collaboration, Muon (g − 2) technical design report, arXiv:1501.06858 [INSPIRE].

2. Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

3. Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

4. T. Aoyama et al., The anomalous magnetic moment of the muon in the standard model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

5. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3