Abstract
Abstract
The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region s » Q2 » $$ {q}_{\perp}^2 $$
q
⊥
2
corresponding to recent LHC experiments with Q2 of order of mass of Z-boson and transverse momentum of DY pair ∼ few tens GeV. The DY hadronic tensors are expressed in terms of quark and quark-gluon TMDs with $$ \frac{1}{Q^2} $$
1
Q
2
and $$ \frac{1}{N_c^2} $$
1
N
c
2
accuracy. It is demonstrated that in the leading order in Nc the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting hadronic tensors depend on two leading-twist TMDs: f1 responsible for total DY cross section, and Boer-Mulders function $$ {h}_1^{\perp } $$
h
1
⊥
. The corresponding qualitative and semi-quantitative predictions seem to agree with LHC data on five angular coefficients A0− A4 of DY pair production. The remaining three coefficients A5− A7 are determined by quark-quark-gluon TMDs multiplied by extra $$ \frac{1}{N_c} $$
1
N
c
so they appear to be relatively small in accordance with LHC results.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献