Cosmic string in Abelian-Higgs model with enhanced symmetry — Implication to the axion domain-wall problem

Author:

Hiramatsu Takashi,Ibe Masahiro,Suzuki Motoo

Abstract

Abstract In our previous work, we found new types of the cosmic string solutions in the Abelian-Higgs model with an enhanced U(1) global symmetry. We dubbed those solutions as the compensated/uncompensated strings. The compensated string is similar to the conventional cosmic string in the Abrikosov-Nielsen-Olesen (ANO) string, around which only the would-be Nambu-Goldstone (NG) boson winds. Around the uncompensated string, on the other hand, the physical NG boson also winds, where the physical NG boson is associated with the spontaneous breaking of the enhanced symmetry. Our previous simulation in the 2+1 dimensional spacetime confirmed that both the compensated/uncompensated strings are formed at the phase transition of the symmetry breaking. Non-trivial winding of the physical NG boson around the strings potentially causes the so-called axion domain- wall problem when the model is applied to the axion model. In this paper, we perform simulation in the 3+1 dimensional spacetime to discuss the fate of the uncompensated strings. We observe that the evolution of the string-network is highly complicated in the 3+1 dimensional simulation compared with that seen in the previous simulation. Despite such complications, we find that the number of the uncompensated strings which could cause can be highly suppressed at late times. Our observation suggests that the present setup can be applied to the axion model without suffering from the axion domain-wall problem.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The quality/cosmology tension for a post-inflation QCD axion;Journal of High Energy Physics;2024-07-24

2. Gauged global strings;Journal of High Energy Physics;2024-02-14

3. String-wall composites winding around a torus knot vacuum in an axionlike model;Physical Review D;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3