Abstract
Abstract
Following the recently obtained complete classification of quantum-deformed $$ \mathfrak{o} $$
o
(4), $$ \mathfrak{o} $$
o
(1, 3) and $$ \mathfrak{o} $$
o
(2) algebras, characterized by classical r-matrices, we study their inhomogeneous D = 3 quantum IW contractions (i.e. the limit of vanishing cosmological constant), with Euclidean or Lorentzian signature. Subsequently, we compare our results with the complete list of D = 3 inhomogeneous Euclidean and D = 3 Poincaré quantum deformations obtained by P. Stachura. It turns out that the IW contractions allow us to recover all Stachura deformations. We further discuss the applicability of our results in the models of 3D quantum gravity in the Chern-Simons formulation (both with and with- out the cosmological constant), where it is known that the relevant quantum deformations should satisfy the Fock-Rosly conditions. The latter deformations in part of the cases are associated with the Drinfeld double structures, which also have been recently investigated in detail.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献