The pressure-wired Stokes element: a mesh-robust version of the Scott–Vogelius element

Author:

Gräßle Benedikt,Bohne Nis-Erik,Sauter Stefan

Abstract

AbstractThe Scott–Vogelius finite element pair for the numerical discretization of the stationary Stokes equation in 2D is a popular element which is based on a continuous velocity approximation of polynomial order k and a discontinuous pressure approximation of order $$k-1$$ k - 1 . It employs a “singular distance” (measured by some geometric mesh quantity $$ \Theta \left( \textbf{z}\right) \ge 0$$ Θ z 0 for triangle vertices $$\textbf{z}$$ z ) and imposes a local side condition on the pressure space associated to vertices $$\textbf{z}$$ z with $$\Theta \left( \textbf{z}\right) =0$$ Θ z = 0 . The method is inf-sup stable for any fixed regular triangulation and $$k\ge 4$$ k 4 . However, the inf-sup constant deteriorates if the triangulation contains nearly singular vertices $$0<\Theta \left( \textbf{z}\right) \ll 1$$ 0 < Θ z 1 . In this paper, we introduce a very simple parameter-dependent modification of the Scott–Vogelius element with a mesh-robust inf-sup constant. To this end, we provide sharp two-sided bounds for the inf-sup constant with an optimal dependence on the “singular distance”. We characterise the critical pressures to guarantee that the effect on the divergence-free condition for the discrete velocity is negligibly small, for which we provide numerical evidence.

Funder

University of Zurich

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3