Author:
Carstensen Carsten,Nataraj Neela,Remesan Gopikrishnan C.,Shylaja Devika
Abstract
AbstractA unified framework for fourth-order semilinear problems with trilinear nonlinearity and general sources allows for quasi-best approximation with lowest-order finite element methods. This paper establishes the stability and a priori error control in the piecewise energy and weaker Sobolev norms under minimal hypotheses. Applications include the stream function vorticity formulation of the incompressible 2D Navier-Stokes equations and the von Kármán equations with Morley, discontinuous Galerkin, $$C^{0}$$
C
0
interior penalty, and weakly over-penalized symmetric interior penalty schemes. The proposed new discretizations consider quasi-optimal smoothers for the source term and smoother-type modifications inside the nonlinear terms.
Funder
Humboldt-Universität zu Berlin
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference28 articles.
1. Brenner, S.C., Gudi, T., Sung, L.Y.: A weakly over-penalized symmetric interior penalty method for the biharmonic problem. Electron. Trans. Numer. Anal. 37, 214–238 (2010)
2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2007)
3. Brenner, S.C., Sung, L.Y.: $$C^0$$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)
4. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)
5. Brezzi, F.: Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12(4), 303–312 (1978)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献