Zhang neural networks: an introduction to predictive computations for discretized time-varying matrix problems

Author:

Uhlig Frank

Abstract

AbstractThis paper wants to increase our understanding and computational know-how for time-varying matrix problems and Zhang Neural Networks. These neural networks were invented for time or single parameter-varying matrix problems around 2001 in China and almost all of their advances have been made in and most still come from its birthplace. Zhang Neural Network methods have become a backbone for solving discretized sensor driven time-varying matrix problems in real-time, in theory and in on-chip applications for robots, in control theory and other engineering applications in China. They have become the method of choice for many time-varying matrix problems that benefit from or require efficient, accurate and predictive real-time computations. A typical discretized Zhang Neural Network algorithm needs seven distinct steps in its initial set-up. The construction of discretized Zhang Neural Network algorithms starts from a model equation with its associated error equation and the stipulation that the error function decrease exponentially fast. The error function differential equation is then mated with a convergent look-ahead finite difference formula to create a distinctly new multi-step style solver that predicts the future state of the system reliably from current and earlier state and solution data. Matlab codes of discretized Zhang Neural Network algorithms for time varying matrix problems typically consist of one linear equations solve and one recursion of already available data per time step. This makes discretized Zhang Neural network based algorithms highly competitive with ordinary differential equation initial value analytic continuation methods for function given data that are designed to work adaptively. Discretized Zhang Neural Network methods have different characteristics and applicabilities than multi-step ordinary differential equations (ODEs) initial value solvers. These new time-varying matrix methods can solve matrix-given problems from sensor data with constant sampling gaps or from functional equations. To illustrate the adaptability of discretized Zhang Neural Networks and further the understanding of this method, this paper details the seven step set-up process for Zhang Neural Networks and twelve separate time-varying matrix models. It supplies new codes for seven of these. Open problems are mentioned as well as detailed references to recent work on discretized Zhang Neural Networks and time-varying matrix computations. Comparisons are given to standard non-predictive multi-step methods that use initial value problems ODE solvers and analytic continuation methods.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3