Bulk-surface virtual element method for systems of PDEs in two-space dimensions

Author:

Frittelli Massimo,Madzvamuse Anotida,Sgura Ivonne

Abstract

AbstractIn this paper we consider a coupled bulk-surface PDE in two space dimensions. The model consists of a PDE in the bulk that is coupled to another PDE on the surface through general nonlinear boundary conditions. For such a system we propose a novel method, based on coupling a virtual element method (Beirão Da Veiga et al. in Math Models Methods Appl Sci 23(01):199–214, 2013. https://doi.org/10.1051/m2an/2013138) in the bulk domain to a surface finite element method (Dziuk and Elliott in Acta Numer 22:289–396, 2013. https://doi.org/10.1017/s0962492913000056) on the surface. The proposed method, which we coin the bulk-surface virtual element method includes, as a special case, the bulk-surface finite element method (BSFEM) on triangular meshes (Madzvamuse and Chung in Finite Elem Anal Des 108:9–21, 2016. https://doi.org/10.1016/j.finel.2015.09.002). The method exhibits second-order convergence in space, provided the exact solution is $$H^{2+1/4}$$ H 2 + 1 / 4 in the bulk and $$H^2$$ H 2 on the surface, where the additional $$\frac{1}{4}$$ 1 4 is required only in the simultaneous presence of surface curvature and non-triangular elements. Two novel techniques introduced in our analysis are (i) an $$L^2$$ L 2 -preserving inverse trace operator for the analysis of boundary conditions and (ii) the Sobolev extension as a replacement of the lifting operator (Elliott and Ranner in IMA J Num Anal 33(2):377–402, 2013. https://doi.org/10.1093/imanum/drs022) for sufficiently smooth exact solutions. The generality of the polygonal mesh can be exploited to optimize the computational time of matrix assembly. The method takes an optimised matrix-vector form that also simplifies the known special case of BSFEM on triangular meshes (Madzvamuse and Chung 2016). Three numerical examples illustrate our findings.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3