Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Link
https://link.springer.com/content/pdf/10.1007/s00211-021-01209-4.pdf
Reference58 articles.
1. Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149–184 (2004)
2. Balsara, D.S., Kim, J.: A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys. 312, 357–384 (2016)
3. Balsara, D.S., Spicer, D.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)
4. Chandrashekar, P.: A global divergence conforming DG method for hyperbolic conservation laws with divergence constraint. J. Sci. Comput. 79(1), 79–102 (2019)
5. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. GQL-based bound-preserving and locally divergence-free central discontinuous Galerkin schemes for relativistic magnetohydrodynamics;Journal of Computational Physics;2024-10
2. Bound-Preserving Framework for Central-Upwind Schemes for General Hyperbolic Conservation Laws;SIAM Journal on Scientific Computing;2024-09-10
3. On Optimal Cell Average Decomposition for High-Order Bound-Preserving Schemes of Hyperbolic Conservation Laws;SIAM Journal on Numerical Analysis;2024-03-11
4. Provably convergent Newton–Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics;Journal of Computational Physics;2024-02
5. A New Discretely Divergence-Free Positivity-Preserving High-Order Finite Volume Method for Ideal MHD Equations;SIAM Journal on Scientific Computing;2024-01-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3