Author:
Merle Fabian,Prohl Andreas
Abstract
AbstractWe derive a posteriori error estimates for the (stopped) weak Euler method to discretize SDE systems which emerge from the probabilistic reformulation of elliptic and parabolic (initial) boundary value problems. The a posteriori estimate exploits the use of a scaled random walk to represent noise, and distinguishes between realizations in the interior of the domain and those close to the boundary. We verify an optimal rate of (weak) convergence for the a posteriori error estimate on deterministic meshes. Based on this estimate, we then set up an adaptive method which automatically selects local deterministic mesh sizes, and prove its optimal convergence in terms of given tolerances. Provided with this theoretical backup, and since corresponding Monte-Carlo based realizations are simple to implement, these methods may serve to efficiently approximate solutions of high-dimensional (initial-)boundary value problems.
Funder
Eberhard Karls Universität Tübingen
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献