Barycentric rational interpolation with no poles and high rates of approximation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Link
http://link.springer.com/content/pdf/10.1007/s00211-007-0093-y.pdf
Reference23 articles.
1. Baltensperger R., Berrut J.-P., Noël B. (1999). Exponential convergence of a linear rational interpolant between transformed Chebychev points. Math.Comput. 68(227): 1109–1120
2. Barry P.J., Goldman R.N. (1988). A recursive evaluation algorithm for a class of Catmull-Rom splines. ACM SIGGRAPH Comput. Graph. 22(4): 199–204
3. Berrut J.-P. (1988). Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15(1): 1–16
4. Berrut, J.-P., Baltensperger, R., Mittelmann, H.D.: Recent developments in barycentric rational interpolation. In: de Bruin, M.G., Mache, D.H., Szabados, J., (eds) Trends and Applications in Constructive Approximation. International Series of Numerical Mathematics, vol. 151, pp 27–51. Birkhäuser, Basel (2005)
5. Berrut J.-P., Mittelmann H.D. (1997). Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval. Comput. Math. Appl. 33(6): 77–86
Cited by 232 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Determination of electronic resonances by analytic continuation using barycentric formula;Computer Physics Communications;2024-09
2. Algorithm xxx: A C++ Class for Robust Linear Barycentric Rational Interpolation;ACM Transactions on Mathematical Software;2024-08-27
3. High-Order Numerical Approximation for 2D Time-Fractional Advection–Diffusion Equation under Caputo Derivative;Fractal and Fractional;2024-08-13
4. A class of reducible quadrature rules for the second-kind Volterra integral equations using barycentric rational interpolation;Journal of Computational and Applied Mathematics;2024-08
5. Approximate solution of Volterra-Fredholm integral equations using generalized barycentric rational interpolant;Applied Mathematics-A Journal of Chinese Universities;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3