On the spectrum of the double-layer operator on locally-dilation-invariant Lipschitz domains

Author:

Chandler-Wilde Simon N.,Hagger Raffael,Perfekt Karl-Mikael,Virtanen Jani A.

Abstract

AbstractWe say that $$\Gamma $$ Γ , the boundary of a bounded Lipschitz domain, is locally dilation invariant if, at each $$x\in \Gamma $$ x Γ , $$\Gamma $$ Γ is either locally $$C^1$$ C 1 or locally coincides (in some coordinate system centred at x) with a Lipschitz graph $$\Gamma _x$$ Γ x such that $$\Gamma _x=\alpha _x\Gamma _x$$ Γ x = α x Γ x , for some $$\alpha _x\in (0,1)$$ α x ( 0 , 1 ) . In this paper we study, for such $$\Gamma $$ Γ , the essential spectrum of $$D_\Gamma $$ D Γ , the double-layer (or Neumann–Poincaré) operator of potential theory, on $$L^2(\Gamma )$$ L 2 ( Γ ) . We show, via localisation and Floquet–Bloch-type arguments, that this essential spectrum is the union of the spectra of related continuous families of operators $$K_t$$ K t , for $$t\in [-\pi ,\pi ]$$ t [ - π , π ] ; moreover, each $$K_t$$ K t is compact if $$\Gamma $$ Γ is $$C^1$$ C 1 except at finitely many points. For the 2D case where, additionally, $$\Gamma $$ Γ is piecewise analytic, we construct convergent sequences of approximations to the essential spectrum of $$D_\Gamma $$ D Γ ; each approximation is the union of the eigenvalues of finitely many finite matrices arising from Nyström-method approximations to the operators $$K_t$$ K t . Through error estimates with explicit constants, we also construct functionals that determine whether any particular locally-dilation-invariant piecewise-analytic $$\Gamma $$ Γ satisfies the well-known spectral radius conjecture, that the essential spectral radius of $$D_\Gamma $$ D Γ on $$L^2(\Gamma )$$ L 2 ( Γ ) is $$<1/2$$ < 1 / 2 for all Lipschitz $$\Gamma $$ Γ . We illustrate this theory with examples; for each we show that the essential spectral radius is$$<1/2$$ < 1 / 2 , providing additional support for the conjecture. We also, via new results on the invariance of the essential spectral radius under locally-conformal $$C^{1,\beta }$$ C 1 , β diffeomorphisms, show that the spectral radius conjecture holds for all Lipschitz curvilinear polyhedra.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3