Author:
Christof Constantin,Haubner Christof
Abstract
AbstractThis paper is concerned with error estimates for the piecewise linear finite element approximation of the two-dimensional scalar Signorini problem on a convex polygonal domain $$\varOmega $$
Ω
. Using a Céa-type lemma, a supercloseness result, and a non-standard duality argument, we prove $$W^{1,p}(\varOmega )$$
W
1
,
p
(
Ω
)
-, $$L^\infty (\varOmega )$$
L
∞
(
Ω
)
-, $$W^{1,\infty }(\varOmega )$$
W
1
,
∞
(
Ω
)
-, and $$H^{1/2}(\partial \varOmega )$$
H
1
/
2
(
∂
Ω
)
-error estimates under reasonable assumptions on the regularity of the exact solution and $$L^p(\varOmega )$$
L
p
(
Ω
)
-error estimates under comparatively mild assumptions on the involved contact sets. The obtained orders of convergence turn out to be optimal for problems with essentially bounded right-hand sides. Our results are accompanied by numerical experiments which confirm the theoretical findings.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference43 articles.
1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
2. Apel, T., and Nicaise, S.: Regularity of the solution of the scalar Signorini problem in polygonal domains. Results Math. 75, 75 (2019)
3. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. SIAM, Philadelphia (2006)
4. Baiocchi, C.: Estimation d’erreur dans $$L^\infty $$ pour les inéquations à obstacle. Lect. Notes Math. 606, 27–34 (1977)
5. Belhachmi, Z., Belgacem, F.B.: Quadratic finite element approximation of the Signorini problem. Math. Comput. 72, 83–104 (2003)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献