Author:
Simoes Alexandre Anahory,Marrero Juan Carlos,de Diego David Martín
Abstract
AbstractWe construct the exponential map associated to a nonholonomic system that allows us to define an exact discrete nonholonomic constraint submanifold. We reproduce the continuous nonholonomic flow as a discrete flow on this discrete constraint submanifold deriving an exact discrete version of the nonholonomic equations. Finally, we derive a general family of nonholonomic integrators that includes as a particular case the exact discrete nonholonomic trajectory.
Funder
Consejo Superior de Investigaciones Cientificas
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference35 articles.
1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin/Cummings Publishing Co.Inc. Advanced Book Program, Reading, Mass (1978)
2. Ball, K.R., Zenkov, D.V.: Hamel’s formalism and variational integrators. In: Geometry, mechanics, and dynamics, volume 73 of Fields Institution Communication, pp. 477–506. Springer, New York (2015)
3. Blanes, S., Casas, F.: A concise introduction to geometric numerical integration. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL (2016)
4. Bloch, A.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics, vol. 24. Springer, Berlin (2015)
5. Celledoni, E., Farré Puiggalí, M., Hoiseth, E.H., de Diego, D.M.: Energy-preserving integrators applied to nonholonomic systems. J. Nonlinear Sci. 29(4), 1523–1562 (2019)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献