Fast hyperbolic wavelet regression meets ANOVA

Author:

Lippert Laura,Potts Daniel,Ullrich Tino

Abstract

AbstractWe use hyperbolic wavelet regression for the fast reconstruction of high-dimensional functions having only low dimensional variable interactions. Compactly supported periodic Chui–Wang wavelets are used for the tensorized hyperbolic wavelet basis. In a first step we give a self-contained characterization of tensor product Sobolev–Besov spaces on thed-torus with arbitrary smoothness in terms of the decay of such wavelet coefficients. In the second part we perform and analyze scattered-data approximation using a hyperbolic cross type truncation of the basis expansion for the associated least squares method. The corresponding system matrix is sparse due to the compact support of the wavelets, which leads to a significant acceleration of the matrix vector multiplication. In case of i.i.d. samples we can even bound the approximation error with high probability by loosing only$$\log $$log-terms that do not depend ondcompared to the best approximation. In addition, if the function has low effective dimension (i.e. only interactions of few variables), we qualitatively determine the variable interactions and omit ANOVA terms with low variance in a second step in order to increase the accuracy. This allows us to suggest an adapted model for the approximation. Numerical results show the efficiency of the proposed method.

Funder

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Reference45 articles.

1. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)

2. Bartel, F.: Stability and error guarantees for least squares approximation with noisy samples. SMAI J. Comput. Math. (2022) (accepted)

3. Bohn, B.: Error analysis of regularized and unregularized least-squares regression on discretized function spaces. Dissertation, Institut für Numerische Simulation, Universität Bonn (2017)

4. Bohn, B.: On the convergence rate of sparse grid least squares regression. In: Garcke, J., Pflüger, D., Webster, C., Zhang, G. (eds.) Sparse Grids and Applications—Miami 2016 Lecture Notes in Computational Science and Engineering, vol. 123. Springer, Cham (2018)

5. Bohn, B., Griebel, M.: Error estimates for multivariate regression on discretized function spaces. SIAM J. Numer. Anal. 55(4), 1843–1866 (2017)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3