Author:
Antonietti Paola F.,Liverani Lorenzo,Pata Vittorino
Abstract
AbstractGiven a positive operator A on some Hilbert space, and a nonnegative decreasing summable function $$\mu $$
μ
, we consider the abstract equation with memory $$\begin{aligned} \ddot{u}(t)+ A u(t)- \int _0^t \mu (s)Au(t-s) ds=0 \end{aligned}$$
u
¨
(
t
)
+
A
u
(
t
)
-
∫
0
t
μ
(
s
)
A
u
(
t
-
s
)
d
s
=
0
modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provide numerical evidence of the fact that the energy $$\begin{aligned} {{\textsf{E}}}(t)=\Big (1-\int _0^t\mu (s)ds\Big )\Vert u(t)\Vert ^2_1+\Vert \dot{u}(t)\Vert ^2 +\int _0^t\mu (s)\Vert u(t)-u(t-s)\Vert ^2_1ds \end{aligned}$$
E
(
t
)
=
(
1
-
∫
0
t
μ
(
s
)
d
s
)
‖
u
(
t
)
‖
1
2
+
‖
u
˙
(
t
)
‖
2
+
∫
0
t
μ
(
s
)
‖
u
(
t
)
-
u
(
t
-
s
)
‖
1
2
d
s
of any nontrivial solution cannot decay faster than exponential, no matter how fast might be the decay of the memory kernel $$\mu $$
μ
. This will be accomplished by simulating the integro-differential equation for different choices of the memory kernel $$\mu $$
μ
and of the initial data.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference40 articles.
1. Akyüz, A., Sezer, M.: A Chebyshev collocation method for the solution of linear integro-differential equations. Int. J. Comput. Math. 72, 491–507 (1999)
2. Chepyzhov, V.V., Pata, V.: Some remarks on stability of semigroups arising from linear viscoelasticity. Asymptot. Anal. 50, 269–291 (2006)
3. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239–249 (1961)
4. Conti, M., Dell’Oro, F., Pata, V.: Some unexplored questions arising in linear viscoelasticity. J. Funct. Anal. 282, 10 (2022)
5. Conti, M., Pata, V.: General decay properties of abstract linear viscoelasticity. Z. Angew. Math. Phys. 71, 6 (2020)