Exponential convergence of hp FEM for spectral fractional diffusion in polygons

Author:

Banjai Lehel,Melenk Jens M.,Schwab Christoph

Abstract

AbstractFor the spectral fractional diffusion operator of order 2s, $$s \in (0,1)$$ s ( 0 , 1 ) , in bounded, curvilinear polygonal domains $$\varOmega \subset {{\mathbb {R}}}^2$$ Ω R 2 we prove exponential convergence of two classes of hp discretizations under the assumption of analytic data (coefficients and source terms, without any boundary compatibility), in the natural fractional Sobolev norm $${\mathbb {H}}^s(\varOmega )$$ H s ( Ω ) . The first hp discretization is based on writing the solution as a co-normal derivative of a $$2+1$$ 2 + 1 -dimensional local, linear elliptic boundary value problem, to which an hp-FE discretization is applied. A diagonalization in the extended variable reduces the numerical approximation of the inverse of the spectral fractional diffusion operator to the numerical approximation of a system of local, decoupled, second order reaction-diffusion equations in$$\varOmega $$ Ω . Leveraging results on robust exponential convergence of hp-FEM for second order, linear reaction diffusion boundary value problems in $$\varOmega $$ Ω , exponential convergence rates for solutions $$u\in {\mathbb {H}}^s(\varOmega )$$ u H s ( Ω ) of $$\mathcal {L}^s u = f$$ L s u = f follow. Key ingredient in this hp-FEM are boundary fitted meshes with geometric mesh refinement towards$$\partial \varOmega $$ Ω . The second discretization is based on exponentially convergent numerical sinc quadrature approximations of the Balakrishnan integral representation of $$\mathcal {L}^{-s}$$ L - s combined with hp-FE discretizations of a decoupled system of local, linear, singularly perturbed reaction-diffusion equations in$$\varOmega $$ Ω . The present analysis for either approach extends to (polygonal subsets $${\widetilde{\mathcal {M}}}$$ M ~ of) analytic, compact 2-manifolds $${\mathcal {M}}$$ M , parametrized by a global, analytic chart $$\chi $$ χ with polygonal Euclidean parameter domain $$\varOmega \subset {{\mathbb {R}}}^2$$ Ω R 2 . Numerical experiments for model problems in nonconvex polygonal domains and with incompatible data confirm the theoretical results. Exponentially small bounds on Kolmogorov n-widths of solution sets for spectral fractional diffusion in curvilinear polygons and for analytic source terms are deduced.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3