A new formulation using the Schur complement for the numerical existence proof of solutions to elliptic problems: without direct estimation for an inverse of the linearized operator

Author:

Sekine Kouta,Nakao Mitsuhiro T.,Oishi Shin’ichi

Abstract

AbstractInfinite-dimensional Newton methods can be effectively used to derive numerical proofs of the existence of solutions to partial differential equations (PDEs). In computer-assisted proofs of PDEs, the original problem is transformed into the infinite-dimensional Newton-type fixed point equation $$w = - {\mathcal {L}}^{-1} {\mathcal {F}}(\hat{u}) + {\mathcal {L}}^{-1} {\mathcal {G}}(w)$$ w = - L - 1 F ( u ^ ) + L - 1 G ( w ) , where $${\mathcal {L}}$$ L is a linearized operator, $${\mathcal {F}}(\hat{u})$$ F ( u ^ ) is a residual, and $${\mathcal {G}}(w)$$ G ( w ) is a nonlinear term. Therefore, the estimations of $$\Vert {\mathcal {L}}^{-1} {\mathcal {F}}(\hat{u}) \Vert $$ L - 1 F ( u ^ ) and $$\Vert {\mathcal {L}}^{-1}{\mathcal {G}}(w) \Vert $$ L - 1 G ( w ) play major roles in the verification procedures . In this paper, using a similar concept to block Gaussian elimination and its corresponding ‘Schur complement’ for matrix problems, we represent the inverse operator $${\mathcal {L}}^{-1}$$ L - 1 as an infinite-dimensional operator matrix that can be decomposed into two parts: finite-dimensional and infinite-dimensional. This operator matrix yields a new effective realization of the infinite-dimensional Newton method, which enables a more efficient verification procedure compared with existing Nakao’s methods for the solution of elliptic PDEs. We present some numerical examples that confirm the usefulness of the proposed method. Related results obtained from the representation of the operator matrix as $${\mathcal {L}}^{-1}$$ L - 1 are presented in the “Appendix”.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rigorous Computation of Solutions of Semilinear PDEs on Unbounded Domains via Spectral Methods;SIAM Journal on Applied Dynamical Systems;2024-07-22

2. Efficient Approaches for Verifying the Existence and Bound of Inverse of Linear Operators in Hilbert Spaces;Journal of Scientific Computing;2023-01-11

3. Validated forward integration scheme for parabolic PDEs via Chebyshev series;Communications in Nonlinear Science and Numerical Simulation;2022-06

4. Computer-assisted proofs for some nonlinear diffusion problems;Communications in Nonlinear Science and Numerical Simulation;2022-06

5. Computer-assisted proof for the stationary solution existence of the Navier–Stokes equation over 3D domains;Communications in Nonlinear Science and Numerical Simulation;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3