Multiresolution kernel matrix algebra

Author:

Harbrecht H.,Multerer M.,Schenk O.,Schwab Ch.

Abstract

AbstractWe propose a sparse algebra for samplet compressed kernel matrices to enable efficient scattered data analysis. We show that the compression of kernel matrices by means of samplets produces optimally sparse matrices in a certain S-format. The compression can be performed in cost and memory that scale essentially linearly with the number of data points for kernels of finite differentiability. The same holds true for the addition and multiplication of S-formatted matrices. We prove that the inverse of a kernel matrix, given that it exists, is compressible in the S-format as well. The use of selected inversion allows to directly compute the entries in the corresponding sparsity pattern. Moreover, S-formatted matrix operations enable the efficient, approximate computation of more complicated matrix functions such as $${\varvec{A}}^\alpha $$ A α or $$\exp ({\varvec{A}})$$ exp ( A ) of a matrix $${\varvec{A}}$$ A . The matrix algebra is justified mathematically by pseudo differential calculus. As an application, we consider Gaussian process learning algorithms for implicit surfaces. Numerical results are presented to illustrate and quantify our findings.

Funder

Università della Svizzera italiana

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. Abels, H.: Pseudodifferential and Singular Integral Operators. De Gruyter, Berlin (2012)

2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

3. Alm, D., Harbrecht, H., Krämer, U.: The $$\cal{H} ^2$$-wavelet method. J. Comput. Appl. Math. 267, 131–159 (2014)

4. Bach, F.R., Jordan, M.I.: Kernel independent component analysis. J. Mach. Learn. Res. 3, 1–48 (2002)

5. Beebe, N.H.F., Linderberg, J.: Simplifications in the generation and transformation of two-electron integrals in molecular calculations. Int. J. Quantum Chem. 7, 683–705 (1977)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3