Author:
Feireisl Eduard,Lukáčová-Medvid’ová Mária,She Bangwei
Abstract
AbstractWe present new error estimates for the finite volume and finite difference methods applied to the compressible Navier–Stokes equations. The main innovative ingredients of the improved error estimates are a refined consistency analysis combined with a continuous version of the relative energy inequality. Consequently, we obtain better convergence rates than those available in the literature so far. Moreover, the error estimates hold in the whole physically relevant range of the adiabatic coefficient.
Funder
Institute of Mathematics of the Czech Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference28 articles.
1. Breit, D., Feireisl, E., Hofmanová, M.: Local strong solutions to the stochastic compressible Navier–Stokes system. Commun. Partial Differ. Equ. 43(2), 313–345 (2018)
2. Springer Series in Computational Mathematics;V Dolejší,2015
3. Feistauer, M.: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 67. Longman Scientific & Technical, Harlow (1993)
4. Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. The Clarendon Press, Oxford University Press (2003)
5. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献