Author:
Bartels Sören,Kaltenbach Alex
Abstract
AbstractRecent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems using the Crouzeix–Raviart element require the existence of a Lipschitz continuous dual solution, which is not generally given. We provide analytic proofs showing that the Lipschitz continuity of a dual solution is not necessary, in general. Using the Lipschitz truncation technique, we, in addition, derive error estimates that depend directly on the Sobolev regularity of a given dual solution.
Funder
Albert-Ludwigs-Universität Freiburg im Breisgau
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference34 articles.
1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86, 125–145 (1984). https://doi.org/10.1007/BF00275731
2. Acerbi, E., Fusco, N.: A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99, 261–281 (1987). https://doi.org/10.1007/BF00284509
3. Acerbi, E., Fusco, N.: An approximation lemma for $$W^{1,p}$$ functions. In: Material instabilities in continuum mechanics (Edinburgh, 1985–1986) Oxford Sci. Publ., pp. 1–5. Oxford University Press, New York
4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. The Clarendon Press, Oxford University Press, New York (2000)
5. Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces, second ed., MOS-SIAM series on optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2014). https://doi.org/10.1137/1.9781611973488
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献