Abstract
AbstractWe analyze several types of Galerkin approximations of a Gaussian random field$$\mathscr {Z}:\mathscr {D}\times \varOmega \rightarrow \mathbb {R}$$Z:D×Ω→Rindexed by a Euclidean domain$$\mathscr {D}\subset \mathbb {R}^d$$D⊂Rdwhose covariance structure is determined by a negative fractional power$$L^{-2\beta }$$L-2βof a second-order elliptic differential operator$$L:= -\nabla \cdot (A\nabla ) + \kappa ^2$$L:=-∇·(A∇)+κ2. Under minimal assumptions on the domain $$\mathscr {D}$$D, the coefficients$$A:\mathscr {D}\rightarrow \mathbb {R}^{d\times d}$$A:D→Rd×d,$$\kappa :\mathscr {D}\rightarrow \mathbb {R}$$κ:D→R, and the fractional exponent$$\beta >0$$β>0, we prove convergence in$$L_q(\varOmega ; H^\sigma (\mathscr {D}))$$Lq(Ω;Hσ(D))and in$$L_q(\varOmega ; C^\delta (\overline{\mathscr {D}}))$$Lq(Ω;Cδ(D¯))at (essentially) optimal rates for (1) spectral Galerkin methods and (2) finite element approximations. Specifically, our analysis is solely based on$$H^{1+\alpha }(\mathscr {D})$$H1+α(D)-regularity of the differential operatorL, where$$0<\alpha \le 1$$0<α≤1. For this setting, we furthermore provide rigorous estimates for the error in the covariance function of these approximations in$$L_{\infty }(\mathscr {D}\times \mathscr {D})$$L∞(D×D)and in the mixed Sobolev space$$H^{\sigma ,\sigma }(\mathscr {D}\times \mathscr {D})$$Hσ,σ(D×D), showing convergence which is more than twice as fast compared to the corresponding$$L_q(\varOmega ; H^\sigma (\mathscr {D}))$$Lq(Ω;Hσ(D))-rate. We perform several numerical experiments which validate our theoretical results for (a) the original Whittle–Matérn class, where$$A\equiv \mathrm {Id}_{\mathbb {R}^d}$$A≡IdRdand$$\kappa \equiv {\text {const.}}$$κ≡const., and (b) an example of anisotropic, non-stationary Gaussian random fields in$$d=2$$d=2dimensions, where$$A:\mathscr {D}\rightarrow \mathbb {R}^{2\times 2}$$A:D→R2×2and$$\kappa :\mathscr {D}\rightarrow \mathbb {R}$$κ:D→Rare spatially varying.
Funder
Delft University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference47 articles.
1. Andreev, R.: PPFEM—MATLAB routines for the FEM with piecewise polynomial splines on product meshes (2016). https://bitbucket.org/numpde/ppfem/. Retrieved on November 12, 2018
2. Bolin, D., Kirchner, K., Kovács, M.: Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise. BIT 58(4), 881–906 (2018)
3. Bolin, D., Kirchner, K., Kovács, M.: Numerical solution of fractional elliptic stochastic PDEs with spatial white noise. IMA J. Numer. Anal. 40(2), 1051–1073 (2020)
4. Bolin, D., Lindgren, F.: Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping. Ann. Appl. Stat. 5(1), 523–550 (2011)
5. Bonito, A., Pasciak, J.E.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84(295), 2083–2110 (2015)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献