Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields

Author:

Cox Sonja G.ORCID,Kirchner KristinORCID

Abstract

AbstractWe analyze several types of Galerkin approximations of a Gaussian random field$$\mathscr {Z}:\mathscr {D}\times \varOmega \rightarrow \mathbb {R}$$Z:D×ΩRindexed by a Euclidean domain$$\mathscr {D}\subset \mathbb {R}^d$$DRdwhose covariance structure is determined by a negative fractional power$$L^{-2\beta }$$L-2βof a second-order elliptic differential operator$$L:= -\nabla \cdot (A\nabla ) + \kappa ^2$$L:=-·(A)+κ2. Under minimal assumptions on the domain $$\mathscr {D}$$D, the coefficients$$A:\mathscr {D}\rightarrow \mathbb {R}^{d\times d}$$A:DRd×d,$$\kappa :\mathscr {D}\rightarrow \mathbb {R}$$κ:DR, and the fractional exponent$$\beta >0$$β>0, we prove convergence in$$L_q(\varOmega ; H^\sigma (\mathscr {D}))$$Lq(Ω;Hσ(D))and in$$L_q(\varOmega ; C^\delta (\overline{\mathscr {D}}))$$Lq(Ω;Cδ(D¯))at (essentially) optimal rates for (1) spectral Galerkin methods and (2) finite element approximations. Specifically, our analysis is solely based on$$H^{1+\alpha }(\mathscr {D})$$H1+α(D)-regularity of the differential operatorL, where$$0<\alpha \le 1$$0<α1. For this setting, we furthermore provide rigorous estimates for the error in the covariance function of these approximations in$$L_{\infty }(\mathscr {D}\times \mathscr {D})$$L(D×D)and in the mixed Sobolev space$$H^{\sigma ,\sigma }(\mathscr {D}\times \mathscr {D})$$Hσ,σ(D×D), showing convergence which is more than twice as fast compared to the corresponding$$L_q(\varOmega ; H^\sigma (\mathscr {D}))$$Lq(Ω;Hσ(D))-rate. We perform several numerical experiments which validate our theoretical results for (a) the original Whittle–Matérn class, where$$A\equiv \mathrm {Id}_{\mathbb {R}^d}$$AIdRdand$$\kappa \equiv {\text {const.}}$$κconst., and (b) an example of anisotropic, non-stationary Gaussian random fields in$$d=2$$d=2dimensions, where$$A:\mathscr {D}\rightarrow \mathbb {R}^{2\times 2}$$A:DR2×2and$$\kappa :\mathscr {D}\rightarrow \mathbb {R}$$κ:DRare spatially varying.

Funder

Delft University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3