Abstract
AbstractWe consider an inverse problem for Schrödinger operators on connected equilateral graphs with standard matching conditions. We calculate the spectral determinant and prove that the asymptotic distribution of a subset of its zeros can be described by the roots of a polynomial. We verify that one of the roots is equal to the mean value of the potential and apply it to prove an Ambarzumian type result, i.e., if a specific part of the spectrum is the same as in the case of zero potential, then the potential has to be zero.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference32 articles.
1. Akkermans, E., Comtet, A., Desbois, J., Montambaux, G., Texier, C.: Spectral determinant on quantum graphs. Ann. Phys. 284(1), 10–51 (2000)
2. Ambarzumian, V.: Über eine Frage der Eigenwerttheorie. Zeitschrift für Physik 53, 690–695 (1929)
3. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs. AMS, Providence, RI (2013)
4. Bollobás, B.: Modern Graph Theory. Springer, New York (1998)
5. Bolte, J., Egger, S., Rückriemen, R.: Heat-kernel and resolvent asymptotics for Schrödinger operators on metric graphs. Appl. Math. Res. Express 2015(1), 129–165 (2014)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献