The Coburn Lemma and the Hartman–Wintner–Simonenko Theorem for Toeplitz Operators on Abstract Hardy Spaces

Author:

Karlovych OleksiyORCID,Shargorodsky Eugene

Abstract

AbstractLet X be a Banach function space on the unit circle $${\mathbb {T}}$$ T , let $$X'$$ X be its associate space, and let H[X] and $$H[X']$$ H [ X ] be the abstract Hardy spaces built upon X and $$X'$$ X , respectively. Suppose that the Riesz projection P is bounded on X and $$a\in L^\infty {\setminus }\{0\}$$ a L \ { 0 } . We show that P is bounded on $$X'$$ X . So, we can consider the Toeplitz operators $$T(a)f=P(af)$$ T ( a ) f = P ( a f ) and $$T({\overline{a}})g=P({\overline{a}}g)$$ T ( a ¯ ) g = P ( a ¯ g ) on H[X] and $$H[X']$$ H [ X ] , respectively. In our previous paper, we have shown that if X is not separable, then one cannot rephrase Coburn’s lemma as in the case of classical Hardy spaces $$H^p$$ H p , $$1<p<\infty $$ 1 < p < , and guarantee that T(a) has a trivial kernel or a dense range on H[X]. The first main result of the present paper is the following extension of Coburn’s lemma: the kernel of T(a) or the kernel of $$T({\overline{a}})$$ T ( a ¯ ) is trivial. The second main result is a generalisation of the Hartman–Wintner–Simonenko theorem saying that if T(a) is normally solvable on the space H[X], then $$1/a\in L^\infty $$ 1 / a L .

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory,Analysis

Reference26 articles.

1. Bennett, C., Sharpley, R.: Interpolation of Operators. Volume 129 of Pure and Applied Mathematics. Academic Press, Inc., Boston (1988)

2. Böttcher, A., Karlovich, Y.I.: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Volume 154 of Progress in Mathematics. Birkhäuser, Basel (1997)

3. Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators. Springer Monographs in Mathematics, 2nd edn. Springer, Berlin (2006)

4. Coburn, L.A.: Weyl’s theorem for nonnormal operators. Mich. Math. J. 13, 285–288 (1966)

5. Douglas, R.G.: Banach Algebra Techniques in Operator Theory. Volume 179 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1998)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3