The Drury–Arveson Space on the Siegel Upper Half-space and a von Neumann Type Inequality

Author:

Arcozzi NicolaORCID,Chalmoukis NikolaosORCID,Monguzzi AlessandroORCID,Peloso Marco M.ORCID,Salvatori MauraORCID

Abstract

AbstractIn this work we study what we call Siegel–dissipative vector of commuting operators $$(A_1,\ldots , A_{d+1})$$ ( A 1 , , A d + 1 ) on a Hilbert space $${{\mathcal {H}}}$$ H and we obtain a von Neumann type inequality which involves the Drury–Arveson space DA on the Siegel upper half-space $${{\mathcal {U}}}$$ U . The operator $$A_{d+1}$$ A d + 1 is allowed to be unbounded and it is the infinitesimal generator of a contraction semigroup $$\{e^{-i\tau A_{d+1}}\}_{\tau <0}$$ { e - i τ A d + 1 } τ < 0 . We then study the operator $$e^{-i\tau A_{d+1}}A^{\alpha }$$ e - i τ A d + 1 A α where $$A^{\alpha }=A_1^{\alpha _1}\cdots A^{\alpha _d}_d$$ A α = A 1 α 1 A d α d for $$\alpha \in {\mathbb N}_0^d$$ α N 0 d and prove that can be studied by means of model operators on a weighted $$L^2$$ L 2 space. To prove our results we obtain a Paley–Wiener type theorem for DA and we investigate some multiplier operators on DA as well.

Funder

Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni

Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory,Analysis

Reference23 articles.

1. Agler, J., McCarthy, J.E., Kramer, L.E.: Pick Interpolation and Hilbert Function Spaces, vol. 44. American Mathematical Society, Providence (2002)

2. Ambrozie, C.-G., Engliš, M., Müller, V.: Operator tuples and analytic models over general domains in $${\mathbb{C}}^n$$. J. Operator Theory 47(2), 287–302 (2002)

3. Arcozzi, N., Levi, M.: On a class of shift-invariant subspaces of the Drury-Arveson space. Concr. Oper. 5(1), 1–8 (2018)

4. Arcozzi, N., Monguzzi, A., Peloso, M.M., Salvatori, M.: Paley-Wiener theorems on the Siegel upper half-space. J. Fourier Anal. Appl. 25(4), 1958–1986 (2019)

5. Arcozzi, N., Rochberg, R., Sawyer, E.: Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls. Adv. Math. 218(4), 1107–1180 (2008)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carleson measures for Hardy-Sobolev spaces in the Siegel upper half-space;Journal of Mathematical Analysis and Applications;2024-12

2. Dilations of commuting C0-semigroups with bounded generators and the von Neumann polynomial inequality;Journal of Mathematical Analysis and Applications;2023-07

3. Sampling in spaces of entire functions of exponential type in Cn+1;Journal of Functional Analysis;2022-03

4. Carleson and Reverse Carleson Measures on Homogeneous Siegel Domains;Complex Analysis and Operator Theory;2021-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3