Abstract
AbstractIn this work we study what we call Siegel–dissipative vector of commuting operators $$(A_1,\ldots , A_{d+1})$$
(
A
1
,
…
,
A
d
+
1
)
on a Hilbert space $${{\mathcal {H}}}$$
H
and we obtain a von Neumann type inequality which involves the Drury–Arveson space DA on the Siegel upper half-space $${{\mathcal {U}}}$$
U
. The operator $$A_{d+1}$$
A
d
+
1
is allowed to be unbounded and it is the infinitesimal generator of a contraction semigroup $$\{e^{-i\tau A_{d+1}}\}_{\tau <0}$$
{
e
-
i
τ
A
d
+
1
}
τ
<
0
. We then study the operator $$e^{-i\tau A_{d+1}}A^{\alpha }$$
e
-
i
τ
A
d
+
1
A
α
where $$A^{\alpha }=A_1^{\alpha _1}\cdots A^{\alpha _d}_d$$
A
α
=
A
1
α
1
⋯
A
d
α
d
for $$\alpha \in {\mathbb N}_0^d$$
α
∈
N
0
d
and prove that can be studied by means of model operators on a weighted $$L^2$$
L
2
space. To prove our results we obtain a Paley–Wiener type theorem for DA and we investigate some multiplier operators on DA as well.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference23 articles.
1. Agler, J., McCarthy, J.E., Kramer, L.E.: Pick Interpolation and Hilbert Function Spaces, vol. 44. American Mathematical Society, Providence (2002)
2. Ambrozie, C.-G., Engliš, M., Müller, V.: Operator tuples and analytic models over general domains in $${\mathbb{C}}^n$$. J. Operator Theory 47(2), 287–302 (2002)
3. Arcozzi, N., Levi, M.: On a class of shift-invariant subspaces of the Drury-Arveson space. Concr. Oper. 5(1), 1–8 (2018)
4. Arcozzi, N., Monguzzi, A., Peloso, M.M., Salvatori, M.: Paley-Wiener theorems on the Siegel upper half-space. J. Fourier Anal. Appl. 25(4), 1958–1986 (2019)
5. Arcozzi, N., Rochberg, R., Sawyer, E.: Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls. Adv. Math. 218(4), 1107–1180 (2008)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献