Abstract
AbstractFor a given self-adjoint operator A with discrete spectrum, we completely characterise possible eigenvalues of its rank-one perturbations B and discuss the inverse problem of reconstructing B from its spectrum.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference39 articles.
1. Ahlfors, L.V.: Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd edn. McGraw-Hill Book Co., New York (1978)
2. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. With an Appendix by Pavel Exner, 2nd edn. AMS Chelsea Publishing, Providence, RI (2005)
3. Albeverio, S., Konstantinov, A., Koshmanenko, V.: Decompositions of singular continuous spectra of $$\mathscr {H}_{-2}$$-class rank one perturbations. Integral Equ. Oper. Theory 52(4), 455–464 (2005)
4. Albeverio, S., Koshmanenko, V., Kurasov, P., Nizhnik, L.: On approximations of rank one $$\mathscr {H}_{-2}$$-perturbations. Proc. Am. Math. Soc. 131(5), 1443–1452 (2003)
5. Albeverio, S., Koshmanenko, V.: Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions. Potential Anal. 11, 279–287 (1999)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献