Author:
Liu Hui,Dong Xibin,Meng Yuan,Gao Tong,Mao Liangliang,Gao Ran
Abstract
AbstractIn order to ensure the effective analysis and reconstruction of forests, it is key to ensure the quantitative description of their spatial structure. In this paper, a distance model for the optimal stand spatial structure based on weighted Voronoi diagrams is proposed. In particular, we provide a novel methodological model for the comprehensive evaluation of the spatial structure of forest stands in natural mixed conifer-broadleaved forests and the formulation of management decision plans. The applicability of the rank evaluation and the optimal solution distance model are compared and assessed for different standard sample plots of natural mixed conifer-broadleaved forests. The effect of crown width on the spatial structure unit of the trees is observed to be higher than that of the diameter at breast height. Moreover, the influence of crown length is greater than that of tree height. There are nine possible spatial structure units determined by the weighted Voronoi diagram for the number of neighboring trees in the central tree, with an average intersection of neighboring crowns reaching 80%. The rank rating of natural forest sample plots is correlated with the optimal solution distance model, and their results are generally consistent for natural forests. However, the rank rating is not able to provide a quantitative assessment. The optimal solution distance model is observed to be more comprehensive than traditional methods for the evaluation of the spatial structure of forest stands. It can effectively reflect the trends in realistic stand spatial structure factors close to or far from the ideal structure point, and accurately assesses the forest spatial structure. The proposed optimal solution distance model improves the integrated evaluation of the spatial structure of forest stands and provides solid theoretical and technical support for sustainable forest management.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献