Advancing forest hydrological research: exploring global research trends and future directions through scientometric analysis

Author:

Farooqi Tanzeel Javaid Aini,Portela Rubén,Xu Zhou,Pan Shulin,Irfan Muhammad,Ali Arshad

Abstract

AbstractForest hydrology, the study of water dynamics within forested catchments, is crucial for understanding the intricate relationship between forest cover and water balances across different scales, from ecosystems to landscapes, or from catchment watersheds. The intensified global changes in climate, land use and cover, and pollution that occurred over the past century have brought about adverse impacts on forests and their services in water regulation, signifying the importance of forest hydrological research as a re-emerging topic of scientific interest. This article reviews the literature on recent advances in forest hydrological research, intending to identify leading countries, institutions, and researchers actively engaged in this field, as well as highlighting research hotspots for future exploration. Through a systematic analysis using VOSviewer, drawing from 17,006 articles retrieved from the Web of Science Core Collection spanning 2000–2022, we employed scientometric methods to assess research productivity, identify emerging topics, and analyze academic development. The findings reveal a consistent growth in forest hydrological research over the past two decades, with the United States, Charles T. Driscoll, and the Chinese Academy of Sciences emerging as the most productive country, author, and institution, respectively. The Journal of Hydrology emerges as the most co-cited journal. Analysis of keyword co-occurrence and co-cited references highlights key research areas, including climate change, management strategies, runoff-erosion dynamics, vegetation cover changes, paired catchment experiments, water quality, aquatic biodiversity, forest fire dynamics and hydrological modeling. Based on these findings, our study advocates for an integrated approach to future research, emphasizing the collection of data from diverse sources, utilization of varied methodologies, and collaboration across disciplines and institutions. This holistic strategy is essential for developing sustainable approaches to forested watershed planning and management. Ultimately, our study provides valuable insights for researchers, practitioners, and policymakers, guiding future research directions towards forest hydrological research and applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3