Single and combined effects of fertilization, ectomycorrhizal inoculation, and drought on container-grown Japanese larch seedlings

Author:

Agathokleous Evgenios,Kitao Mitsutoshi,Komatsu Masabumi,Tamai Yutaka,Harayama Hisanori,Koike Takayoshi

Abstract

AbstractClimate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status. Therefore, it is important to enhance the tolerance to drought and thus health, vigor, and success of transplantation seedlings used in the forestry by modifying fertilization and promoting mycorrhization. Here, we sowed seeds of Japanese larch (Larix kaempferi) in 0.2-L containers with 0.5 g (low fertilization; LF) or 2 g (high fertilization; HF) of slow-release fertilizer early in the growing season. One month later, we irrigated seedlings with non-sterilized ectomycorrhizal inoculum (ECM) or sterilized solution (non-ECM), and after about 2 months, plants were either kept well watered (WW; 500 mL water/plant/week) or subjected to drought (DR; 50 mL water per plant/week) until the end of the growing season. HF largely stimulated plant growth and above- and belowground biomass production, effects that are of practical significance, but caused a small decrease in stomatal conductance (Gs390) and transpiration rate (E390), which in practice is insignificant. ECM treatment resulted in moderate inhibition of seedling growth and biomass and largely canceled out the enhancement of biomass and foliar K content by HF. DR caused a large decrease in CO2 assimilation, and enhanced stomatal closure and induced senescence. DR also largely depleted foliar Mg and enriched foliar K. Although DR caused a large decrease in foliar P content in LF, it moderately increased P in HF. Likewise, DR increased foliar K in HF but not in LF, and decreased foliar P in ECM plants but not in non-ECM plants. Conversely, ECM plants exhibited a large enrichment in foliar P under WW and had a lower water potential under DR when grown in LF. These results indicate that the drought tolerance and health and vigor of Japanese larch seedlings can be modified by soil fertility and soil microorganisms. This study provides a basis for new multifactorial research programs aimed at producing seedlings of superior quality for forestation under climate change.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3