Elevated CO2 offsets the alteration of foliar chemicals (n-icosane, geranyl acetate, and elixene) induced by elevated O3 in three taxa of O3-tolerant eucalypts

Author:

Novriyanti Eka,Mao Qiaozhi,Agathokleous Evgenios,Watanabe Makoto,Hashidoko Yasuyuki,Koike Takayoshi

Abstract

AbstractEucalypts are important forest resources in southwestern China, and may be tolerant to elevated ground-level ozone (O3) concentrations that can negatively affect plant growth. High CO2 may offset O3-induced effects by providing excess carbon to produce secondary metabolites or by inducing stomatal closure. Here, the effects of elevated CO2 and O3 on leaf secondary metabolites and other defense chemicals were studied by exposing seedlings of Eucalyptus globulus, E. grandis, and E. camaldulensis × E. deglupta to a factorial combination of two levels of O3 (< 10 nmol mol−1 and 60 nmol mol−1) and CO2 (ambient: 370 μmol mol−1 and 600 μmol mol−1) in open-top field chambers. GC-profiles of leaf extracts illustrated the effect of elevated O3 and the countering effect of high CO2 on compounds in leaf epicuticular wax and essential oils, i.e., n-icosane, geranyl acetate and elixene, compounds known as a first-line defense against insect herbivores. n-Icosane may be involved in tolerance mechanisms of E. grandis and the hybrid, while geranyl acetate and elixene in the tolerance of E. globulus. Elevated O3 and CO2, singly or in combination, affected only leaf physiology but not biomass of various organs. Elevated CO2 impacted several leaf traits, including stomatal conductance, leaf mass per area, carbon, lignin, n-icosane, geranyl acetate and elixene. Limited effects of elevated O3 on leaf physiology (nitrogen, n-icosane, geranyl acetate, elixene) were commonly offset by elevated CO2. We conclude that E. globulus, E. grandis and the hybrid were tolerant to these O3 and CO2 treatments, and n-icosane, geranyl acetate and elixene may be major players in tolerance mechanisms of the tested species.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3