Implication of community-level ecophysiological parameterization to modelling ecosystem productivity: a case study across nine contrasting forest sites in eastern China

Author:

Fang Minzhe,Cheng Changjin,He Nianpeng,Si Guoxin,Sun Osbert Jianxin

Abstract

AbstractParameterization is a critical step in modelling ecosystem dynamics. However, assigning parameter values can be a technical challenge for structurally complex natural plant communities; uncertainties in model simulations often arise from inappropriate model parameterization. Here we compared five methods for defining community-level specific leaf area (SLA) and leaf C:N across nine contrasting forest sites along the North–South Transect of Eastern China, including biomass-weighted average for the entire plant community (AP_BW) and four simplified selective sampling (biomass-weighted average over five dominant tree species [5DT_BW], basal area weighted average over five dominant tree species [5DT_AW], biomass-weighted average over all tree species [AT_BW] and basal area weighted average over all tree species [AT_AW]). We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites, with deviations ranging from 28.0 to 73.3%. In addition, there were only slight deviations (< 10%) between the whole plant community sampling (AP_BW) predicted NPP and the four simplified selective sampling methods, and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site. The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling, and will support the choice of parameterization methods.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3