Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm

Author:

Ogana Friday Nwabueze,Ercanli Ilker

Abstract

AbstractModelling tree height-diameter relationships in complex tropical rain forest ecosystems remains a challenge because of characteristics of multi-species, multi-layers, and indeterminate age composition. Effective modelling of such complex systems required innovative techniques to improve prediction of tree heights for use for aboveground biomass estimations. Therefore, in this study, deep learning algorithm (DLA) models based on artificial intelligence were trained for predicting tree heights in a tropical rain forest of Nigeria. The data consisted of 1736 individual trees representing 116 species, and measured from 52 0.25 ha sample plots. A K-means clustering was used to classify the species into three groups based on height-diameter ratios. The DLA models were trained for each species-group in which diameter at beast height, quadratic mean diameter and number of trees per ha were used as input variables. Predictions by the DLA models were compared with those developed by nonlinear least squares (NLS) and nonlinear mixed-effects (NLME) using different evaluation statistics and equivalence test. In addition, the predicted heights by the models were used to estimate aboveground biomass. The results showed that the DLA models with 100 neurons in 6 hidden layers, 100 neurons in 9 hidden layers and 100 neurons in 7 hidden layers for groups 1, 2, and 3, respectively, outperformed the NLS and NLME models. The root mean square error for the DLA models ranged from 1.939 to 3.887 m. The results also showed that using height predicted by the DLA models for aboveground biomass estimation brought about more than 30% reduction in error relative to NLS and NLME. Consequently, minimal errors were created in aboveground biomass estimation compared to those of the classical methods.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3