Abstract
AbstractLong-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry. However, how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear. These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests. The results show that natural succession had significant effects on carbon (C), nitrogen (N) and phosphorous (P) concentrations in leaf-litter-soil and their ratios in severely eroded areas. Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages. Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages. Litter P concentration decreased in the early successional stages and increased during late successional stages, with no overall significant change. Soil C and N concentrations and C:N, C:P and N:P ratios increased with successional stages. Soil C and N concentrations decreased with the increasing soil depth. Both were significantly different between any successional stages and controls (cropland) in the upper 10 cm and 10–20 cm soil layers. Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N, during the shrub stage, by P, and during the forest stages, by both of N and P. In addition, there were close correlations between litter and leaf C:N:P ratios, soil and litter C and N levels, and C:P and N:P ratios. These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility, and provide insights into C:N:P relationships of leaf, litter and soil influenced by vegetation succession stage.
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Agren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst 39(1):153–170
2. An H, Shangguan ZP (2010) Leaf stoichiometric trait and specific leaf area of dominant species in the secondary succession of the Loess Plateau. Pol J Ecol 58:103–113
3. Bao SD (2000) Soil and agricultural chemistry analysis. China Agriculture Press, Beijing, pp 30–78 (in Chinese)
4. Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD (2014) Rhizosphere stoichiometry: are C:N:P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytol 201:505–517
5. Broadbent EN, Zambrano AMA, Asner GP, Soriano M, Field CB, de Souza HR, Pena-Claros M, Adams RI, Dirzo R, Giles L (2014) Integrating stand and soil properties to understand foliar nutrient dynamics during forest succession following slash-and-burn agriculture in the Bolivian Amazon. Plos One 9(2):e86042
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献