Wood forming tissue-specific expression of PdSuSy and HCHL increases holocellulose content and improves saccharification in Populus

Author:

Zhang Yang,Xu Hua,Kong Yingzhen,Hua Jiawen,Tang Xianfeng,Zhuang Yamei,Bai Yue,Zhou Gongke,Chai Guohua

Abstract

AbstractDevelopment of strategies to deconstruct lignocellulosic biomass in tree species is essential for biofuels and biomaterials production. We applied a wood forming tissue-specific system in a hybrid poplar to express both PdSuSy (a sucrose synthase gene from Populus deltoides × P. euramericana that has not been functionally characterized) and HCHL (the hydroxycinnamoyl-CoA hydratase-lyase gene from Pseudomonas fluorescens, which inhibits lignin polymerization in Arabidopsis). The PdSuSy-HCHL overexpression poplars correspondingly driven by the promoters of Arabidopsis AtCesA7 and AtC4H resulted in a significant increase in cellulose (> 8%), xylan (> 12%) and glucose (> 29%) content, accompanying a reduction in galacturonic acid (> 36%) content, compared to control plants. The saccharification efficiency of these overexpression poplars was dramatically increased by up to 27%, but total lignin content was unaffected. These transgenic poplars showed inhibited growth characteristics, including > 16% reduced plant height, > 10% reduced number of internodes, and > 18% reduced fresh weight after growth of 4 months, possibly due to relatively low expression of HCHL in secondary xylem. Our results demonstrate the structural complexity and interaction of the cell wall polymers in wood tissue and outline a potential method to increase biomass saccharification in woody species.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hemicellulose-based hydrogels for advanced applications;Frontiers in Bioengineering and Biotechnology;2023-01-09

2. Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw;Advanced Composites and Hybrid Materials;2022-01-04

3. In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls;Plant and Cell Physiology;2021-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3