Author:
Tian Ao,Wang Yanhui,Webb Ashley A.,Yu Pengtao,Wang Xiao,Liu Zebin
Abstract
AbstractPlantations of Rupprecht’s larch (Larix principis-rupprechtii) have been widely established in the drylands of northwest and north China under traditional fast-growing plantation management strategies. These strategies and the long-term logging ban have led to over-populated stands with lower structural and functional stability, less economic benefit and higher water consumption. To guide the sustainable management of larch plantations, field surveys and historical data compilation were undertaken in the Liupan Mountains of northwest China. The main influencing factors (stand structure and site condition) and their effects on mean tree height, mean DBH and timber volumes were determined based on up-boundary line analysis. Tree growth models coupling the effects of tree age, stand density, and elevation were established. Both height and DBH markedly increased initially and then slowly with tree age, decreased with stand density, and showed unimodal change with elevation. The coupled growth models accounted for 72–78% of the variations in tree height, DBH and timber growth. Recommendations for future plantation management are: (1) prolong the rotation to at least 60 years to produce large-diameter, high-quality timber and maintain greater carbon stocks; (2) zone the target functions of stands by elevation; and, (3) reduce stand density for balanced supply of multiple ecosystem services. The growth models developed can predict growth response of larch plantations to density alteration under given ages and elevations, and assist the transformation from traditional management for maximum timber production to site-specific and multifunctional management with longer rotations and moderate tree density.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献