Comparative performances of new and existing indices of crown asymmetry: an evaluation using tall trees of Eucalyptus pilularis (Smith)

Author:

Kong Fanlin,Bi Huiquan,McLean Michael,Li Fengri

Abstract

AbstractOver the past 50 years, crown asymmetry of forest trees has been evaluated through several indices constructed from the perspective of projected crown shape or displacement but often on an ad hoc basis to address specific objectives related to tree growth and competition, stand dynamics, stem form, crown structure and treefall risks. Although sharing some similarities, these indices are largely incoherent and non-comparable as they differ not only in the scale but also in the direction of their values in indicating the degree of crown asymmetry. As the first attempt at devising normative measures of crown asymmetry, we adopted a relative scale between 0 for perfect symmetry and 1 for extreme asymmetry. Five existing crown asymmetry indices (CAIs) were brought onto this relative scale after necessary modifications. Eight new CAIs were adapted from measures of circularity for digital images in computer graphics, indices of income inequality in economics, and a bilateral symmetry indicator in plant leaf morphology. The performances of the 13 CAIs were compared over different numbers of measured crown radii for 30 projected crowns of mature Eucalyptus pilularis trees through benchmarking statistics and rank order correlation analysis. For each CAI, the index value based on the full measurement of 36 evenly spaced radii of a projected crown was taken as the true value in the benchmarking process. The index (CAI13) adapted from the simple bilateral symmetry measure proved to be the least biased and most precise. Its performance was closely followed by that of three other CAIs. The minimum number of crown radii that is needed to provide at least an indicative measure of crown asymmetry is four. For more accurate and consistent measures, at least 6 or 8 crown radii are needed. The range of variability in crown morphology of the trees under investigation also needs to be taken into consideration. Although the CAIs are from projected crown radii, they can be readily extended to individual tree crown metrics that are now commonly extracted from LiDAR and other remotely sensed data. Adding a normative measure of crown asymmetry to individual tree crown metrics will facilitate the process of big data analytics and artificial intelligence in forestry wherever crown morphology is among the factors to be considered for decision making in forest management.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3