A Generalized Conditional Gradient Method for Dynamic Inverse Problems with Optimal Transport Regularization

Author:

Bredies KristianORCID,Carioni MarcelloORCID,Fanzon SilvioORCID,Romero FranciscoORCID

Abstract

AbstractWe develop a dynamic generalized conditional gradient method (DGCG) for dynamic inverse problems with optimal transport regularization. We consider the framework introduced in Bredies and Fanzon (ESAIM: M2AN 54:2351–2382, 2020), where the objective functional is comprised of a fidelity term, penalizing the pointwise in time discrepancy between the observation and the unknown in time-varying Hilbert spaces, and a regularizer keeping track of the dynamics, given by the Benamou–Brenier energy constrained via the homogeneous continuity equation. Employing the characterization of the extremal points of the Benamou–Brenier energy (Bredies et al. in Bull Lond Math Soc 53(5):1436–1452, 2021), we define theatomsof the problem as measures concentrated on absolutely continuous curves in the domain. We propose a dynamic generalization of a conditional gradient method that consists of iteratively adding suitably chosenatomsto the current sparse iterate, and subsequently optimizing the coefficients in the resulting linear combination. We prove that the method converges with a sublinear rate to a minimizer of the objective functional. Additionally, we propose heuristic strategies and acceleration steps that allow to implement the algorithm efficiently. Finally, we provide numerical examples that demonstrate the effectiveness of our algorithm and model in reconstructing heavily undersampled dynamic data, together with the presence of noise.

Funder

University of Graz

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis

Reference67 articles.

1. Alberti, G.S., Ammari, H., Romero, F., Wintz, T.: Dynamic spike superresolution and applications to ultrafast ultrasound imaging. SIAM Journal on Imaging Sciences 12(3), 1501–1527 (2019)

2. Aliprantis, C.D., Border, K.: Infinite Dimensional Analysis. Springer, Berlin Heidelberg (2006)

3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel (2005)

5. Andersen, M.S., Dahl, J., Vandenberghe, L.: CVXOPT: A Python package for convex optimization, version 1.1.5. Available at: https://cvxopt.org/

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3