Author:
Riis Erlend S.,Ehrhardt Matthias J.,Quispel G. R. W.,Schönlieb Carola-Bibiane
Abstract
AbstractThe optimisation of nonsmooth, nonconvex functions without access to gradients is a particularly challenging problem that is frequently encountered, for example in model parameter optimisation problems. Bilevel optimisation of parameters is a standard setting in areas such as variational regularisation problems and supervised machine learning. We present efficient and robust derivative-free methods called randomised Itoh–Abe methods. These are generalisations of the Itoh–Abe discrete gradient method, a well-known scheme from geometric integration, which has previously only been considered in the smooth setting. We demonstrate that the method and its favourable energy dissipation properties are well defined in the nonsmooth setting. Furthermore, we prove that whenever the objective function is locally Lipschitz continuous, the iterates almost surely converge to a connected set of Clarke stationary points. We present an implementation of the methods, and apply it to various test problems. The numerical results indicate that the randomised Itoh–Abe methods can be superior to state-of-the-art derivative-free optimisation methods in solving nonsmooth problems while still remaining competitive in terms of efficiency.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献