The Average Condition Number of Most Tensor Rank Decomposition Problems is Infinite

Author:

Beltrán CarlosORCID,Breiding PaulORCID,Vannieuwenhoven NickORCID

Abstract

AbstractThe tensor rank decomposition, or canonical polyadic decomposition, is the decomposition of a tensor into a sum of rank-1 tensors. The condition number of the tensor rank decomposition measures the sensitivity of the rank-1 summands with respect to structured perturbations. Those are perturbations preserving the rank of the tensor that is decomposed. On the other hand, the angular condition number measures the perturbations of the rank-1 summands up to scaling. We show for random rank-2 tensors that the expected value of the condition number is infinite for a wide range of choices of the density. Under a mild additional assumption, we show that the same is true for most higher ranks $$r\ge 3$$ r 3 as well. In fact, as the dimensions of the tensor tend to infinity, asymptotically all ranks are covered by our analysis. On the contrary, we show that rank-2 tensors have finite expected angular condition number. Based on numerical experiments, we conjecture that this could also be true for higher ranks. Our results underline the high computational complexity of computing tensor rank decompositions. We discuss consequences of our results for algorithm design and for testing algorithms computing tensor rank decompositions.

Funder

Universidad de Cantabria

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3