Optimal Combination of Linear and Spectral Estimators for Generalized Linear Models

Author:

Mondelli Marco,Thrampoulidis Christos,Venkataramanan Ramji

Abstract

AbstractWe study the problem of recovering an unknown signal $${\varvec{x}}$$ x given measurements obtained from a generalized linear model with a Gaussian sensing matrix. Two popular solutions are based on a linear estimator $$\hat{\varvec{x}}^\mathrm{L}$$ x ^ L and a spectral estimator $$\hat{\varvec{x}}^\mathrm{s}$$ x ^ s . The former is a data-dependent linear combination of the columns of the measurement matrix, and its analysis is quite simple. The latter is the principal eigenvector of a data-dependent matrix, and a recent line of work has studied its performance. In this paper, we show how to optimally combine $$\hat{\varvec{x}}^\mathrm{L}$$ x ^ L and $$\hat{\varvec{x}}^\mathrm{s}$$ x ^ s . At the heart of our analysis is the exact characterization of the empirical joint distribution of $$({\varvec{x}}, \hat{\varvec{x}}^\mathrm{L}, \hat{\varvec{x}}^\mathrm{s})$$ ( x , x ^ L , x ^ s ) in the high-dimensional limit. This allows us to compute the Bayes-optimal combination of $$\hat{\varvec{x}}^\mathrm{L}$$ x ^ L and $$\hat{\varvec{x}}^\mathrm{s}$$ x ^ s , given the limiting distribution of the signal $${\varvec{x}}$$ x . When the distribution of the signal is Gaussian, then the Bayes-optimal combination has the form $$\theta \hat{\varvec{x}}^\mathrm{L}+\hat{\varvec{x}}^\mathrm{s}$$ θ x ^ L + x ^ s and we derive the optimal combination coefficient. In order to establish the limiting distribution of $$({\varvec{x}}, \hat{\varvec{x}}^\mathrm{L}, \hat{\varvec{x}}^\mathrm{s})$$ ( x , x ^ L , x ^ s ) , we design and analyze an approximate message passing algorithm whose iterates give $$\hat{\varvec{x}}^\mathrm{L}$$ x ^ L and approach $$\hat{\varvec{x}}^\mathrm{s}$$ x ^ s . Numerical simulations demonstrate the improvement of the proposed combination with respect to the two methods considered separately.

Funder

Institute of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Non-Asymptotic Analysis of Generalized Vector Approximate Message Passing Algorithms With Rotationally Invariant Designs;IEEE Transactions on Information Theory;2024-08

2. Correlation adjusted debiased Lasso: debiasing the Lasso with inaccurate covariate model;Journal of the Royal Statistical Society Series B: Statistical Methodology;2024-06-15

3. A Unifying Tutorial on Approximate Message Passing;Foundations and Trends® in Machine Learning;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3