Affine-Invariant Ensemble Transform Methods for Logistic Regression

Author:

Pidstrigach Jakiw,Reich Sebastian

Abstract

AbstractWe investigate the application of ensemble transform approaches to Bayesian inference of logistic regression problems. Our approach relies on appropriate extensions of the popular ensemble Kalman filter and the feedback particle filter to the cross entropy loss function and is based on a well-established homotopy approach to Bayesian inference. The arising finite particle evolution equations as well as their mean-field limits are affine-invariant. Furthermore, the proposed methods can be implemented in a gradient-free manner in case of nonlinear logistic regression and the data can be randomly subsampled similar to mini-batching of stochastic gradient descent. We also propose a closely related SDE-based sampling method which again is affine-invariant and can easily be made gradient-free. Numerical examples demonstrate the appropriateness of the proposed methodologies.

Funder

Universität Potsdam

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EnKSGD: A Class of Preconditioned Black Box Optimization and Inversion Algorithms;SIAM Journal on Scientific Computing;2024-06-19

2. An Overview and Analysis of Machine Learning Classification Algorithms in Healthcare;Advances in Bioinformatics and Biomedical Engineering;2024-04-05

3. Affine invariant ensemble transform methods to improve predictive uncertainty in neural networks;Foundations of Data Science;2024

4. Rough McKean–Vlasov dynamics for robust ensemble Kalman filtering;The Annals of Applied Probability;2023-12-01

5. Machine Learning Frameworks in Carpooling;Advances in Business Information Systems and Analytics;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3