Fourier–Taylor Approximation of Unstable Manifolds for Compact Maps: Numerical Implementation and Computer-Assisted Error Bounds
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis
Link
http://link.springer.com/article/10.1007/s10208-016-9325-9/fulltext.html
Reference44 articles.
1. G. Arioli and H. Koch. Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal., 197(3):1033–1051, 2010.
2. G. Arioli and H. Koch. Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst., 9(3):1119–1133, 2010.
3. G. Arioli and P. Zgliczyński. Symbolic dynamics for the Hénon-Heiles Hamiltonian on the critical level. J. Differential Equations, 171(1):173–202, 2001.
4. M. Breden, J.-P. Lessard, and J. D. Mireles James. Computation of maximal local (un)stable manifold patches by the parameterization method. Indag. Math. (N.S.), 27(1):340–367, 2016.
5. X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J., 52(2):283–328, 2003.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Computer-assisted proofs for some nonlinear diffusion problems;Communications in Nonlinear Science and Numerical Simulation;2022-06
2. Validated Numerical Approximation of Stable Manifolds for Parabolic Partial Differential Equations;Journal of Dynamics and Differential Equations;2022-03-23
3. A functional analytic approach to validated numerics for eigenvalues of delay equations;Journal of Computational Dynamics;2020
4. Efficient representation of invariant manifolds of periodic orbits in the CRTBP;Discrete & Continuous Dynamical Systems - B;2019
5. Fourier–Taylor parameterization of unstable manifolds for parabolic partial differential equations: Formalism, implementation and rigorous validation;Indagationes Mathematicae;2019-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3