Abstract
AbstractB-Series and generalizations are a powerful tool for the analysis of numerical integrators. An extension named exotic aromatic B-Series was introduced to study the order conditions for sampling the invariant measure of ergodic SDEs. Introducing a new symmetry normalization coefficient, we analyze the algebraic structures related to exotic B-Series and S-Series. Precisely, we prove the relationship between the Grossman–Larson algebras over exotic and grafted forests and the corresponding duals to the Connes–Kreimer coalgebras and use it to study the natural composition laws on exotic S-Series. Applying this algebraic framework to the derivation of order conditions for a class of stochastic Runge–Kutta methods, we present a multiplicative property that ensures some order conditions to be satisfied automatically.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献