Convergent Regularization in Inverse Problems and Linear Plug-and-Play Denoisers

Author:

Hauptmann Andreas,Mukherjee Subhadip,Schönlieb Carola-Bibiane,Sherry Ferdia

Abstract

AbstractRegularization is necessary when solving inverse problems to ensure the well-posedness of the solution map. Additionally, it is desired that the chosen regularization strategy is convergent in the sense that the solution map converges to a solution of the noise-free operator equation. This provides an important guarantee that stable solutions can be computed for all noise levels and that solutions satisfy the operator equation in the limit of vanishing noise. In recent years, reconstructions in inverse problems are increasingly approached from a data-driven perspective. Despite empirical success, the majority of data-driven approaches do not provide a convergent regularization strategy. One such popular example is given by iterative plug-and-play (PnP) denoising using off-the-shelf image denoisers. These usually provide only convergence of the PnP iterates to a fixed point, under suitable regularity assumptions on the denoiser, rather than convergence of the method as a regularization technique, thatis under vanishing noise and regularization strength. This paper serves two purposes: first, we provide an overview of the classical regularization theory in inverse problems and survey a few notable recent data-driven methods that are provably convergent regularization schemes. We then continue to discuss PnP algorithms and their established convergence guarantees. Subsequently, we consider PnP algorithms with learned linear denoisers and propose a novel spectral filtering technique of the denoiser to control the strength of regularization. Further, by relating the implicit regularization of the denoiser to an explicit regularization functional, we are the first to rigorously show that PnP with a learned linear denoiser leads to a convergent regularization scheme. The theoretical analysis is corroborated by numerical experiments for the classical inverse problem of tomographic image reconstruction.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3