Zirconium Nitride for Plasmonic Cloaking of Visible Nanowire Photodetectors

Author:

Hansen Katherine,Dutta Amartya,Cardona Melissa,Yang ChenORCID

Abstract

AbstractLight scattered by a photodetector disturbs the probing field, resulting in noise. Cloaking is an effective method to reduce this noise. Here we investigate theoretically an emerging plasmonic material, zirconium nitride (ZrN), as a plasmonic cloak for silicon (Si) nanowire-based photodetectors and compare it with a traditional plasmonic material, gold (Au). Using Mie formalism, we have obtained the scattering cancelation across the visible spectrum. We found that ZrN cloaks produce a significant decrease in the scattering from bare Si nanowires, which is 40% greater than that obtained with Au cloaks in the wavelength region of 400–500 nm. The scattering cancelations become comparable at 550 nm, with Au providing a better scattering cancelation compared to ZrN over the wavelength region of 600–700 nm. To include the absorption and provide a measure of overall performance on noise reduction, a figure of merit (FOM), defined as the ratio of the absorption efficiency and the scattering efficiency of the cloaked nanowire to that of the bare Si nanowire, was calculated. We show that the optimized ZrN cloak provides up to 3 times enhancement of the FOM over a bare Si NW and a 60% improvement over an optimized Au-cloaked NW, in the wavelength region of 400–500 nm. An optimized Au-cloaked NW shows up to 17.69 times improvement in the wavelength region of 600–700 nm over a bare Si NW and up to a 2.7 times improvement over an optimized ZrN-cloaked NW. We also predicted the optimal dimensions for the cloaked NWs with respect to the largest FOM at various wavelengths between 400 and 650 nm.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3