Electrostatic Dipole Polarizability and Plasmon Resonances of Multilayer Nanoshells

Author:

Ugwuoke Luke. C.,Tame Mark. S.

Abstract

AbstractWe propose a generalized formula for calculating the dipole polarizability of spherical multilayer nanoshells (MNSs) within the long-wavelength approximation (LWA). Given a MNS with a finite number of concentric layers, radii, and dielectric properties, embedded in a dielectric medium, in the presence of a uniform electric field, we show that its frequency-dependent and complex dipole polarizability can be expressed in terms of the dipole polarizability of the preceding MNS. This approach is different from previous more involved methods where the LWA polarizability of a MNS is usually derived from scattering coefficients. Using both finite-element method- and Mie theory-based simulations, we show that our proposed formula reproduces the usual LWA results, when it is used to predict absorption spectra, by comparing the results to simulated spectra obtained from MNSs with n number of layers up to n = 6 layers. An iterative algorithm for calculating the dipole polarizability of a MNS based on the generalized formula is presented. A Fröhlich function whose zeroes correspond to the dipolar localized surface plasmon resonances (LSPRs) supported by the MNS is proposed. We identify a pairing behaviour by some LSPRs in the Fröhlich function that might also be useful for mode characterization.

Funder

Department of Science and Innovation (DSI) through the South African Quantum Technology Initiative

Stellenbosch University

National Research Foundation

Council for Scientific and Industrial Research, South Africa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3