Compact and Efficient Ring Resonator–Based Plasmonic Lens with Multiple Functionalities

Author:

Aparna U.,Kumar M. Sathish

Abstract

AbstractA novel plasmonic lens based on a metal–insulator–metal bus waveguide coupled to a ring resonator is proposed and numerically investigated. The inner edge of the ring resonator was perforated with nanogrooves so that light emitted by these nanogrooves was sharply focused at the center of the ring. The structure relies on interference and resonance theory. The principle of the lens can be extended to a device 1 × N demultiplexer as well as a 1 × N power splitter. These functionalities were validated through finite element method simulations. Results show that the lens had a sharp focus, without any smearing, and a full width at half maximum (FWHM) intensity of around 240 nm. For the 1 × N demultiplexer, the selectivity was high with an FWHM bandwidth of less than 20 nm and crosstalk of less than − 10 dB, whereas the 1 × N power splitter had a narrow bandwidth and was able to split power into N equal parts with negligible imbalance. The proposed focusing structure is compact, and the simulation results show that the structure performs the various functionalities with high efficiency. Due to this, these structures will be of utmost utility in future all-optical signal processing systems.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3